Deep Reinforcement Learning (I)

Markov Decision Process and Deep Q-Learning

SUN Yinghan 2021. 12. 03

Part I: Markov Decision Process (MDP)

Part II: Q-Learning: Model-Free RL

Part III: The 1st DRL Algorithm: Deep-Q Learning

Part IV: Further Discussion

Part I: Markov Decision Process (MDP)

Definition

Markov property: Current state completely characterizes the state of the world.

- A Markov decision process is defined by a tuple: $\langle S, A, \mathcal{R}, \mathbb{P}, \gamma \rangle$.
- S: set of possible states
- \mathcal{A} : set of possible actions
- \mathcal{R} : distribution of reward
- \mathbb{P} : transition probability
- γ : discount factor

Reward = -1 for all transitions

$$p(s', r|s, a) = \Pr \{ S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a \}$$

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

= $R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$
= $R_{t+1} + \gamma G_{t+1}$

Policies and Value Functions

Policy: ways of acting. It is a mapping from states to probabilities of selecting each possible action.

Reinforcement learning methods specify how the agent's policy is changed as a result of its experience.

Example: equiprobable random policy

Value Function: the expected return when starting in *s* and following π thereafter.

State-value function for policy π : $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$ Action-value function for policy π : $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$

Relationship:
$$v_{\pi}(s) = \sum_{a} \pi(a|s)q_{\pi}(s,a)$$

 $q_{\pi}(s,a) = \sum_{s'} \sum_{r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$

Objective: find the optimal policy, which maximizes cumulative discounted reward (value function).

Exploitation and Exploration

Greedy actions: the action whose estimated value is greatest in one step.

Exploitation: select one of the greedy actions. It is the right thing to do to maximize the expected reward on the one step.

Exploration: select one of the non-greedy actions. It may produce the greater total reward in the long run.

The need to balance exploration and exploitation is a distinctive challenge that arises in reinforcement learning.

\varepsilon-greedy policy: choose greedy actions most of the time, but every once, with small probability ε , randomly select an action from action space.

Bellman Optimality Equation

Bellman equation expresses a relationship between the value of a state and the values of its successor states.

$$q_{\pi}(s,a) = \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

=
$$\sum_{s',r} p(s',r|s,a)[r + \gamma \sum_{a'} \pi(a'|s')q_{\pi}(s',a')]$$

The optimal action-value (Q-value) function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \max_{a'} Q^*(s',a') \right]$$
$$= \mathbb{E}_{s'\sim\epsilon} \left[r + \gamma \max_{a'} Q^*(s',a') | S_t = s, A_t = a \right]$$

Intuition: if the optimal state-action values for the next time-step $Q^*(s', a')$ are known, then the optimal strategy is to take the action that maximizes the expected value of $r + \gamma Q^*(s', a')$. Value Iteration.

The optimal policy: $\pi^* = \arg \max_a Q^*(s, a)$

Part II: Q-Learning: Model-Free RL

Monte Carlo Methods

Question: What if we do not know the environment?

Monte Carlo methods are ways of solving the reinforcement learning problem based on *averaging sample returns*. The only requirement is the *experience* — sample sequences of states, actions, and rewards from actual or simulated interaction with an environment.

As more returns are observed, the average should converge to the expected value.

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Input: a policy \pi to be evaluated

Initialize:

V(s) \in \mathbb{R}, arbitrarily, for all s \in S

Returns(s) \leftarrow an empty list, for all s \in S

Loop forever (for each episode):

Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T

G \leftarrow 0

Loop for each step of episode, t = T - 1, T - 2, \dots, 0:

G \leftarrow \gamma G + R_{t+1}

Unless S_t appears in S_0, S_1, \dots, S_{t-1}:

Append G to Returns(S_t)

V(S_t) \leftarrow average(Returns(S_t))
```

Incremental Implementation

Recall: about the *expected return*

The state-value function for policy π is the *expected return* when starting in S=s and following π thereafter.

The action-value function for policy π is the *expected return* when starting from S=s, taking the action A=a, and thereafter following policy π .

Question: How these *expected returns* can be computed in a computationally efficient manner?

Solution: Incremental implementation

$$V_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} G_i$$

= $\frac{1}{k+1} \left(G_{k+1} + \sum_{i=1}^k G_i \right)$
= $\frac{1}{k+1} G_{k+1} + \frac{k}{k+1} V_k$
= $V_k + \frac{1}{k+1} (G_{k+1} - V_k)$

Q-Learning: A Temporal-Difference Learning Method

Question: What if some applications have very long episodes so that delaying all learning until the end of the episode is too slow?

Solution: Temporal-Difference Learning. Whereas Monte Carlo methods must wait until the end of the episode to determine the increment to value functions, TD methods need to wait only until the next time step.

MC Methods: $V(S_t) \leftarrow V(S_t) + \alpha[G_t - V(S_t)]$ TD Methods: $V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$ $S \leftarrow S'$ until S is terminal

Result: Q-Learning

Episode:24414	time:3.0499	step_num:183
Episode:24415	time:3.3165	step_num:199
Episode:24416	time:2.2831	step_num:137
Episode:24417	time:3.6677	step_num:220
Episode:24418	time:2.9493	step_num:177
Episode:24419	time:2.4158	step_num:145
Episode:24420	time:2.3654	step_num:142
Episode:24421	time:2.6506	step_num:159
Episode:24422	time:3.0648	step_num:184
Episode:24423	time:3.5821	step_num:215
Episode:24424	time:2.3838	step_num:143

time:2.2160	step_num:133
time:2.7504	step_num:165
time:3.0823	step_num:185
time:2.0835	step_num:125
time:376.1777	step_num:22569
time:1182.3005	step_num:70935
time:3.5333	step_num:212
time:2.4996	step_num:150
time:2.4006	step_num:144
time:2.6329	step_num:158
time:2.7166	step_num:163
	time:2.2160 time:2.7504 time:3.0823 time:2.0835 time:376.1777 time:1182.3005 time:3.5333 time:2.4996 time:2.4006 time:2.6329 time:2.7166

e:/RL/demo/CartPoleDQN.py

– 🗆 🗙

ne:/RL/demo/CartPoleDQN.py

- 🗆 🗙

Part III: The 1st DRL Algorithm: Deep-Q Learning

From Q-Learning to Deep Q-Learning

Question: What if there are large number of states, or even infinitely many states?

Solution: Use a function approximator to estimate the action-value function.

Example: Neural Network.

Universal Approximation Theorem: A feedforward network with a single layer is sufficient to represent any function, but the layer may be infeasibly large and may fail to learn and generalize correctly.

If the function approximator is a deep neural network, we call the algorithm as the **deep Q-learning**.

 $Q(s,a;\theta)\approx Q^*(s,a)$

Value Function Approximator: Neural Network

Convolutional Neural Network (CNN)

Value Function Approximator: Neural Network

Multilayer Perceptron (MLP)

SGD: Solving for Optimal Policy

Loss Function:

$$L_{i}(\theta_{i}) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_{i} - Q(s,a;\theta_{i}))^{2} \right]$$
$$y_{i} = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) | s, a \right]$$

Backward Progress:

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) - Q(s,a;\theta_i) \right) \nabla_{\theta_i} Q(s,a;\theta_i) \right]$$

Question: The data is not independent and identically distributed.

Solution: Experience replay!

Experience Replay:

- Continually update a replay memory table of transitions (s, a, r, s') as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Algorithm: Deep Q-Learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for end for

SGD: Solving for Optimal Policy

Loss Function:

$$L_{i}(\theta_{i}) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_{i} - Q(s,a;\theta_{i}))^{2} \right]$$
$$y_{i} = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) | s, a \right]$$

Backward Progress:

$$\nabla_{\theta_i} L_i\left(\theta_i\right) = \mathbb{E}_{s,a \sim \rho(\cdot); s' \sim \mathcal{E}}\left[\left(r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) - Q(s,a;\theta_i)\right) \nabla_{\theta_i} Q(s,a;\theta_i)\right]$$

Question: The training progress is nonstationary! The target for Q(s, a) depends on the current weight θ .

Solution: Use a slow-moving "target" Q-network that is delayed in parameter updates to generate target value labels for the Q-network.

Algorithm: Deep Q-Learning with Experience Replay

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in *D* Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ Every C steps reset $\hat{Q} = Q$ **End For End For**

Results: Cart-Pole Experient

Results: Cart-Pole Experient

Episode:	6195	reward:	128.03 time: 3.33284497261	104736	×
Episode:	6196	reward:	127.03 time: 3.33297777179	9033 	
Episode:	6197	reward:	121.66 time: 3.33186554908	375244	
Episode:	6198	reward:	132.07 time: 3.33208203319	573486	
Episode:	6199	reward:	126.39 time: 3.33226585388	31836	
Episode:	6200	reward:	127.34 time: 3.33249568939	0209	
Episode:	6201	reward:	130.19 time: 3.33240699768	30664	
Episode:	6202	reward:	122.83 time: 3.33284854888	3916	
Episode:	6203	reward:	134.29 time: 3.3328135013	580322	
Episode:	6204	reward:	131.08 time: 3.33279323577	788086	
Episode:	6205	reward:	127.49 time: 3.33321404457	70923	
Episode:	6206	reward:	125.2 time: 3.334056854248	3047	
Episode:	6207	reward:	132.25 time: 3.33131074905	53955	
Episode:	6208	reward:	120.82 time: 3.33264017105	510254	
Episode:	6209	reward:	126.04 time: 3.33264040946	596045	
Episode:	6210	reward:	125.91 time: 3.33246231079	010156	
Episode:	6211	reward:	132.05 time: 3.33220291137	76953	
Episode:	6212	reward:	130.37 time: 3.33236408233	36426	
Episode:	6213	reward:	132.62 time: 3.33226704597	747314	
Episode:	6214	reward:	131.0 time: 3.333185911178	3589	
Episode:	6215	reward:	131.54 time: 3.33267259597	77783	
Episode:	6216	reward:	128.03 time: 3.33208537101	17456	
Episode:	6217	reward:	124.42 time: 3.34935641288	375732	
Episode:	6218	reward:	131.34 time: 3.33326768875	512207	
Episode:	6219	reward:	128.4 time: 3.332059383392	2334	
Episode:	6220	reward:	131.94 time: 3.33324551582	233643	
Episode:	6221	reward:	126.97 time: 3.33172488212	258545	
Episode:	6222	reward:	128.08 time: 3.33215713500	997656	
Episode:	6223	reward:	129.53 time: 3.33220410340	598486	
Episode:	6224	reward:	126.18 time: 3.34943222999	957275	
Episode:	6225	reward:	118.87 time: 3.33166432386	967627	
Episode:	6226	reward:	128.79 time: 3.33285927772	252197	
Episode:	6227	reward:	123.68 time: 3.33249068260	019287	
Episode:	6228	reward:	131.05 time: 3.39931511878	39673	
П					

Part IV: Further Discussion

More RL Algorithms

Question: What if there are a large number of actions, or even infinitely many actions?

Solution: There are some other DRL algorithms can handle this situation.

[1] Sutton R S, Barto A G. Reinforcement learning: An introduction[M]. MIT press, 2018.

[2] Bertsekas D. Reinforcement learning and optimal control[M]. Athena Scientific, 2019.

[3] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533.

[4] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. arXiv preprint arXiv:1312.5602, 2013.

[5] Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay[J]. arXiv preprint arXiv:1511.05952, 2015.

Thanks for Listening